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It is well known that in two dimensions Turing systems produce spots, stripes and labyrinthine patterns, and
in three dimensions lamellar and spherical structures, or their combinations, are observed. In this paper we
study transitions between these states in both two and three dimensions. First, we derive the regions of stability
for different patterns using nonlinear bifurcation analysis. Then, we apply large scale computer simulations to
analyze the pattern selection in a bistable system by studying the effect of parameter selection on morphologi-
cal clustering and the appearance of topological defects. The method elaborated in this paper presents a
probabilistic approach for studying pattern selection in a bistable reaction-diffusion system.
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I. INTRODUCTION

Nature presents a fascinating diversity of patterns in
plants, animals and other natural formations as results of
complex physico-chemical processes[1]. Alan Turing
showed in 1952 that a simple system of coupled reaction-
diffusion equations for two chemicals could give rise to finite
wavelength spatial patterns due to a mechanism called
diffusion-driven instability[2]. These so-called Turing pat-
terns and other related chemical systems have ever since
been under intensive theoretical study[3,4] and similar pat-
tern forming mechanisms have been connected to various
physical systems such as gas-discharge systems[5,6], irradi-
ated materials[7], catalytic surface reactions[8] and semi-
conductor nanostructures[9].

Turing systems have also been proposed to account for
pattern formation in many biological systems, e.g., color pat-
terns on fish skin[10,11], butterfly wings [12] and lady
beetles[13] to mention a few. The first experimental evi-
dence of a Turing structure was not reported until 1990 by
Castetset al. [14], who observed a sustained standing non-
equilibrium chemical pattern in a single-phase open reactor
with a chloride-iodide-malonic acid(CIMA ) reaction. There
has been an increasing interest to develop simple and plau-
sible mathematical models that could describe, at least quali-
tatively, these pattern formations[15–17].

The forms and variations of patterns generated by Turing
systems have been studied analytically and numerically by
investigating the conditions for instability[18], assuming in-
homogeneous diffusion coefficients[19], by introducing do-
main curvature[20] or growth [21], and both homogeneous
[22] and periodic suppression[23]. In addition, symmetries
in Turing systems are of great interest, since they may have
biological relevance; see, e.g., Refs.[19,24,25]. On the other
hand, chemical experiments have confirmed both theoretical
and numerical results and brought more insight concerning
the chemical dynamics of dissipative structures[26–28]. Re-
cently, we have studied numerically the effect of dimension-
ality by simulating three-dimensional Turing systems[29].
The experimental study of three-dimensional Turing struc-
tures[30] is rather cumbersome since it is hard to determine

the exact three-dimensional structure based on two-
dimensional projections. While in two dimensions one ob-
tains spots, stripes or labyrinthine patterns, in three dimen-
sions complex shapes of, e.g., lamellae, spherical droplets
and their combinations appear.

Previously, studies of Turing systems have typically con-
centrated on reaction kinetics and stability aspects(see, e.g.
[31–33]), while the issue of pattern structure and its connec-
tivity has received less attention. Here, we focus on connec-
tivity of Turing patterns and its dependence on the param-
eters of the system. We present a simple way to
quantitatively characterize Turing structures and their con-
nectivity based on statistical analysis of the patterns obtained
from simulations. The connectivity of a pattern with given
parameters cannot be predicted analytically in the presence
of bistability of both striped and spotty patterns. We also
study the “connectivity transition,” which occurs as the pa-
rameters of the system are between those giving rise to either
monostable spots or stripes.

State selection is a fundamental problem in nonequilib-
rium physics and appears in very different contexts ranging
from driven superconductivity[34] to chemical systems
[3,35]. In this paper we address this problem in the context
of reaction-diffusion systems[36] and characterize the pat-
tern selection in the presence of a bistability by analyzing the
statistical properties of the resulting patterns in systems with
different sizes. The transition between monostable patterns
can occur only through a bistable regime, where the pattern
selection will be shown to be probabilistic. This nonequilib-
rium transition bears some resemblance to a first order equi-
librium phase transition: the system exhibits hysteresis. This
phenomenon has been addressed previously in the context of
reaction-diffusion systems. Hysteresis has been observed in
experimental[37] as well as numerical[38] studies of Turing
system, but the transition mechanisms have not been studied
in great detail.

This paper is organized as follows. In the next section, we
briefly introduce a reaction-diffusion model of the Turing
kind (the BVAM model) and in Sec. III we present the rel-
evant results of the nonlinear bifurcation analysis. Then, in
Sec. IV we discuss the concept of connectivity in these sys-
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tems and the methods for characterizing the transition be-
tween different patterns. In Sec. V, we present results from
comprehensive numerical simulations. Finally, in Sec. VI we
draw some relevant conclusions.

II. THE MODEL

A Turing system models the evolution of the concentra-
tions of two chemicals, or morphogens. It is represented in
general by the following reaction-diffusion equations

Ut = DU¹2U + fsU,Vd,

Vt = DV¹2V + gsU,Vd, s1d

whereU;UsxW ,td andV;VsxW ,td are the morphogen concen-
trations, andDU andDV the corresponding diffusion coeffi-
cients setting the time scales for diffusion. The reaction ki-
netics is described by the two nonlinear functionsf andg.

In this study we focus on a Turing model introduced by
Barrio et al. [11], in which the reaction kinetics is developed
by Taylor expanding the nonlinear functions around a sta-
tionary solution sUc,Vcd. The Barrio-Varea-Aragon-Maini
(BVAM ) model is phenomenological one and it is not based
on any particular experimental chemical reaction. If terms of
the fourth and higher order are neglected, and the remaining
equations are nondimensionalized[39], the model reads as

ut = D¹2u + nsu + av − uv2 − Cuvd,

vt = ¹2v + nsbv + hu+ uv2 + Cuvd, s2d

whereu=U−Uc and v=V−Vc are the concentration fields.
Here the parameterC determines the relative strength of the
quadratic and cubic nonlinear terms,D is the ratio of the
diffusion coefficients of the two chemicals, andn acts as a
scaling factor. SettingDÞ1 is a necessary but not sufficient
condition for the diffusion-driven instability to occur in two
and three dimensions[40]. For details about the instability
and the linear stability analysis of the model we refer the
reader to Barrioet al. [11,29].

The BVAM model of Eq.(2) has been devised in such a
way that one can adjust the relative strength of the quadratic
and cubic nonlinearities. These terms dominate the instability
by imposing symmetry requirements to the system and thus
they dictate the pattern selection. In this way our model is
different from the Brusselator[3] or the Lengyel-Epstein
[32] models which have only one nonlinear term and the
morphology of the resulting pattern is determined by the
value of the bifurcation parameter, i.e., the distance to the
onset of instability.

From the linear stability analysis[11,29] we obtain the
dispersion relation and the conditions for the diffusion-
driven instability as the region ink-space with positive
growth rate, i.e., eigenmodesu=u0e

lt and v=v0e
lt with ei-

genvalues Rehlskdj.0. In addition, one can analytically de-
rive the modulus of the critical wave vector

kc
2 =

nsDb + 1d
2D

, s3d

which has here been determined for the caseh=−1 (set to
obtain only one stable state atu=v=0 in the absence of
diffusion). By parameter adjustment it is possible to allow
only a few unstable modes, which can be done with several
different parameter sets. Based on the linear analysis we
chose two sets of parameters for the numerical calculations.
First, D=0.516,a=1.112,b=−1.01 andn=0.45 for the criti-
cal wave numberkc=0.46, and second,D=0.122,a=2.513,
b=−1.005 andn=0.199 corresponding tokc=0.86. In a dis-
cretized three-dimensional cubic system there is more mode
degeneracy than in two dimensions, since the wave number
is of the form

ukWu =
2p

L
Înx

2 + ny
2 + nz

2, s4d

whereL is the system size andnx, ny, nz are the wave number
integer indices(in a two-dimensional systemnz=0).

III. NONLINEAR ANALYSIS

The linear stability analysis that we discussed briefly
above is able to render only a partial picture of the phase
space behavior of inherently nonlinear Turing systems. In
fact one can expect a wide variety of stable patterns with
different symmetries formed in the system. In order to get a
better insight to the nonlinear effects of the system we extend
the analysis from the linear to the weakly nonlinear regime.
The latter is often called bifurcation analysis and it yields
analytical forms for the amplitudes of different symmetries
[41,42]. The aim of the bifurcation analysis is to find a de-
scription of the concentration fieldwW =su,vd in terms of the
active Fourier modes, i.e.,

wW = wW 0o
kW j

sWje
ikW j·rW + Wj

*e−ikW j·rWd, s5d

wherewW 0 defines the direction of the active modes andWj

andWj
* are the amplitudes for modeskW j and −kW j, respectively.

Notice that the sum of complex conjugates is real. The un-
stable modes have slow dynamics, whereas the stable modes
relax quickly and are said to be slaved to the unstable modes.

We have carried out full nonlinear analysis of the BVAM
model by mapping the dynamics of the chemical system to
an equivariant amplitude space using the center manifold
reduction method[43]. The amplitude equation system con-
sists of equations for all the unstable modes which are of the
following form

dWj

dt
= lcWj + f jsW1, . . . ,Wnd, s6d

where the exact form of the termf jsW1, . . . ,Wnd depends on
the lattice under study. The eigenvaluelc may be written in
the vicinity of the onset of instability by using a linear ap-
proximation
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lc = Udl

da
U

a=ac

sa − acd =
n2sn − 2Rd

fns1 + bd − 2Rgfn − Rg
, s7d

whereR=Dkc
2=nsDb+1d /2.

The application of bifurcation analysis to two-
dimensional reaction-diffusion systems has become almost a
routine procedure[4,44]. However, the three-dimensional
case is much more challenging. Pattern selection in a three-
dimensional chemical system is not straightforward, but
there are multiple possible states that must be taken into
account depending on the symmetry under study. The lattices
typically studied in three dimensions are simple cubic(sc),
body-centered cubic(bcc) and face-centered cubic(fcc). Cal-
lahan and Knobloch have been among the first to study
three-dimensional pattern selection using nonlinear analysis
under all these different symmetries[45–47]. In this study
we have followed their computational procedure to calculate
the coefficients of the amplitude equations[47]. The fact that
the strength of the nonlinearitiessCd governs the pattern se-
lection in the BVAM model necessitates some additional al-
gebraic manipulations since we have to find the stability as a
function of the nonlinear coefficientC.

In a two-dimensional Turing system the patterns of inter-
est are typically either stripes aligned in parallel or spots
organized in a hexagonal lattice. Depending on the system
parameters, one of these patterns may spontaneously arise
from random initial conditions in computer simulations. The
bifurcations are thus studied in a hexagonal lattice defined by
three unit wave vectorski separated by an angle of 2p /3.
Since the base vectors of the hexagonal lattice are not lin-
early independents−k1−k2=k3d the lattice is said to exhibit
resonant modes, i.e., the coupling of two other modes may
have effects on the growth of the third mode. Then, the am-
plitude equation system corresponding to the two-
dimensional hexagonal lattice of the critical modekc is de-
fined the normal form given by

dWj

dt
= lcWj + GWj+1

* Wj+2
* − gfuWju2 + ksuWj+1u2 + uWj+2u2dgWj ,

s8d

where j =1, 2, 3(mod 3) and the coefficientsG, g andk can
be presented in terms of the parameters of the original
reaction-diffusion system[Eq. (2)]. This is done by carrying
out a rigorous calculation using the center manifold reduc-
tion, which yields

G =
− 2bCnRÎnsn − 2Rd

sn + bn − 2RdÎsn + bn − 2Rdsn − Rd
, s9d

g =
3bn2sn − 2RdR

sn + bn − 2Rd2sn − Rd
, s10d

k = 2, s11d

where we have denotedR=Dkc
2=nsDb+1d /2. The linear co-

efficient of Eq.(8) is given by Eq.(7).
After derivation of the parameters[Eqs. (9)–(11)] one

must analyze the stability of the bifurcating branches. In two

dimensions there is one branch corresponding to stripes with
stationary amplitudesW1

c=Îslc/gdeif1 and W2
c=W3

c=0.
When kc=0.86 the stability analysis predicts this branch to
be stable forC,0.161. On the other hand, there are two
equilateral branches of hexagons defined by

uW1
cu = uW2

cu = uW3
cu =

− G ± ÎG2 + 4lcgf1 + 2kg
2gs1 + 2kd

, s12d

where the parameters are those defined by Eqs.(9)–(11). The
branch corresponding to the plus sign in Eq.(12) is always
unstable. The other branch of hexagons is predicted to be
stable for 0.084,C,0.611. Since the center manifold re-
duction evaluates the dynamics by weakly nonlinear approxi-
mation, the results of the analysis may be questioned for
strong nonlinearities corresponding to large values ofC.
Based on extensive numerical simulations we have found
that the hexagonal phase is undoubtedly stable even forC
=1.57. However, the most important result of the bifurcation
analysis is the region of bistability is predicted to be
0.084,C,0.161. Within this parameter domain both stripes
and hexagonal spotty patterns are predicted to be stable for
kc=0.86.

In a three-dimensional Turing system the structures that
have been studied numerically are planar lamellae, hexago-
nally packed cylinders(HPC) and spherical shapes organized
in a bcc symmetry, which have been obtained in simulations
of the Brusselator model[48,49]. These structures are stable
also in the BVAM model of Eq.(2) if they are the initial
configuration of the system, but recently we have shown that
the system cannot always find these perfect states, when the
simulation is started from random initial conditions[29]. We
are particularly interested in the structures formed by self-
organization from an arbitrary initial state due to their sug-
gested relevance to morphogenesis. From a random initial
state in three dimensions we were not able to obtain spheri-
cal shapes organized in a perfect lattice. Furthermore, planar
lamellar structures have not been obtained from random ini-
tial state, but instead found complex minimal surfaces[29].

Next we approximate the three-dimensional pattern selec-
tion by considering an sc lattice, which is a coarse approxi-
mation for the forming symmetry. We have also carried out
bifurcation analysis for the bcc lattice, but it does not seem
to serve as a good approximation for the structures resulting
from random initial conditions[39]. In the sc lattice there are
no resonant modes and the amplitude equations are defined
by

dWj

dt
= lcWj − gfuWju2 + ksuWj+1u2 + uWj+2u2dgWj , s13d

where againj =1, 2, 3,(mod 3) andg andk are the coeffi-
cients given by

g =
− bn2fC2s8n − 23Rd − 27Rgsn − 2Rd

9sn + bn − 2Rd2sn − Rd
, s14d
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k =
18fC2s8n − 7Rd − 3Rg
C2s8n − 23Rd − 27R

, s15d

whereR is the same as before, and the linear coefficient of
Eq. (13) is given by Eq.(7).

The branch corresponding to planar lamellae is given by
the stationary amplitudesuW1

cu=Îlc/g, W2
c=W3

c=0 and pre-
dicted to be stable forC,0.361. For the square packed cyl-
inders, which in an sc lattice correspond to the HPC struc-
tures [49], one obtains the amplitudesuW1

cu= uW2
cu

=Îlc/gsk+1d, W3
c=0 and the stability for allC,0.650. The

isotropic branch of spherical structures in an sc lattice has the
amplitudesuW1

cu= uW2
cu= uW3

cu=Îlc/gs2k+1d and is predicted
to be stable for 0.361,C,0.589. It should be noted that the
analysis does not predict bistability of lamellar and spherical
structures. On the other hand, the cylindrical phase is pre-
dicted to be stable for allC.

In Fig. 1 we have collected the eigenvalues of the linear-
ized amplitude systems in 2D and 3D obtained from Eqs.(8)
and (13), respectively. The most relevant outcome of bifur-
cation analysis is that it predicts the stability of different
symmetries and the parameter domain, where the system
exhibits bistability. The exact morphology selection within
the bistable domain cannot be predicted, which is why we
employ a new connectivity measure to be introduced in the
next section. An additional inadequacy of the bifurcation
analysis is that in three dimensions it cannot predict the sta-
bility of more general three-dimensional structures such as
twisted grain boundaries[49] or periodic minimal surfaces
[29], which arise in simulations started from random initial
conditions.

For a more detailed discussion of topics related to nonlin-
ear analysis, we refer the reader to a more technical paper
by one of us [39]. In this study, we perform numerical
calculations in which we vary the parameterC [in Eq. (2)]
that controls the appearance of either stripes or spots. By
gradually changing this control parameters we observe a
transition from stripes(2D) or lamellar (3D) structures to

spots(2D) or spherical droplet(3D) structures as predicted
by the bifurcation analysis. The transition and the pattern
selection within the bistable transition regime will be char-
acterized by concentrating on the connectivity of the struc-
tures defined below.

IV. CONNECTIVITY

Numerical calculations were performed using a standard
Euler method(see the next paragraph for details). In the
numerical simulations of Eq.(2) one deals with two concen-
tration fields with characteristic wave lengths. In order to
visualize this, the concentration of only one of the chemicals
is typically plotted with a gray scale, since in these systems
the fields are in antiphase, i.e., if there is a large amount of
chemicalU in some subdomain, the concentration of chemi-
cal V would be low there. These concentration fields vary
continuously having diffuse boundaries. Now, the connectiv-
ity of chemicals in the system can be studied by defining
subdomains dominated by either chemicalU or V, provided
that the amplitude of the pattern is large enough. If we define
the boundary as the interface between subdomains domi-
nated by different chemicals, we can easily locate the bound-
aries, where the concentrations change rapidly, typically
within one or two lattice sites of the discretized system. Now,
if two points belong to the same domain, i.e., are not sepa-
rated by a boundary, they are considered connected. The
definition of the boundaries in this way is only conceptual in
the sense that in theU-dominated domains the concentration
of V does not have to be zero, only much less than the con-
centration ofU.

In this study the numerical simulations were carried out
by discretizing the spatial dimensions into a square(2D) or
cubic cell(3D) lattice and calculating the Laplacians[53] in
Eq. (2). In these types of problems the finite difference
scheme and Euler’s method are often employed[11,26,54]. It
is possible, and sometimes even desirable, to use the Euler’s
method since it is fast and stable under appropriate condi-
tions, which can be checked by simple linear stability analy-
sis. The Euler scheme has been shown to be stable for our
model even in such circumstances as a disk, where step con-
trol was needed[25]. In all our simulations we chose the
spatial discretization to bedx=dy=dz=1.0 and the equations
of motion were integrated in time using the time stepdt
=0.05. The resolution of the spatial discretization did not
affect the pattern selection provided that the characteristic
wave length of the pattern was set to be a multiple times the
lattice constantsdxd. The boundary conditions were chosen
to be periodic and the initial concentrations of the chemicals
were Gaussian perturbations around the trivial stationary
state(0,0) with a variance significantly lower than the am-
plitude of the final patterns. In order to study the connectivity
in two- and three-dimensional Turing patterns, we performed
extensive simulations for system sizes up to 53105 lattice
cells and let the system to evolve up to 23106 time steps in
order to reach a stationary state.

In Fig. 2 we show changes in the two-dimensional con-
centration fields for different values of the quadratic nonlin-
ear coefficientC in Eq. (2). The patterns in Fig. 2 are snap-

FIG. 1. The set of eigenvaluesmsCd determining the stability of
different structures, i.e., the stripes and hexagonal patterns in 2D,
and lamellae, cylinders, and sc droplets in 3D. The symmetries are
stable formsCd,0.
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shots taken after 50000 iterations in order to make the
transition more gradual and visible within a wider parameter
range. This causes the patterns not being perfectly symmetric
and leads to distortions. If one continued simulations for an
indefinitely long time, Figs. 2(A)–2(E) would most likely
evolve towards aligned stripes, whereas Figs. 2(F)–2(I)
would evolve towards a hexagonal lattice of spots, i.e., the
presented patterns are transient.

When the cubic term dominates(small C), the resulting
stationary pattern is striped with a small number of imper-
fections, see Fig. 2(A). These imperfections can be consid-
ered as topological defects, or dislocations, which could
serve as nucleation sites for spots. More dislocations appear
[see Figs. 2(B) and 2(C)] when the relative strength of the
quadratic term is made larger. As the quadratic term grows,
more spots nucleate and they arrange themselves to hexago-
nal structure and at the same time getting rid of the remain-
ing stripes [see Figs. 2(F)–2(H)]. Similar nucleation pro-
cesses have earlier been observed in numerical simulations
of a reaction-diffusion system generating dissipative quasi-
particles[50]. Finally, when the quadratic term is enhanced
even further, and only spots remain[Fig. 2(I)]. As the present
discussion concerning the nucleation of structure is purely
qualitative it should be mentioned that, e.g., Hagberg and
Meron have previously employed a more rigorous approach
[51]. They studied the dynamics of curved fronts in bistable
two-dimensional media using a set of kinematic equations.

In this sequence of simulations the transition from stripes
to spots was enforced by using a single control parameterC.
Nevertheless, the transition from striped to spotty pattern
seems to happen quite abruptly with respect toC. Note that
the difference in parameters between the figures is not con-
stant: From A to I,C=0.007, 0.091, 0.116, 0.124, 0.129,
0.135, 0.169, 0.258, 1.000. In this context and forkc=0.45
the bistability is predicted to occur for 0.073,C,0.139, as
discussed in[39] in more detail. This corresponds to Figs.
2(B)–2(F).

Now, let us discuss the patterns in Fig. 2 from the clus-
tering point of view. In order to simplify this without loss of

generality, we can assign zeros and ones to the whole lattice
based on the chemical that dominates a given domain. With
this mapping we consider the number of clusters, which is
calculated using the well-known Hoshen-Kopelman algo-
rithm [52] as in typical percolation problems. In Fig. 2(A)
one can see that in the case of stripes the number ofU- and
V-dominated clusters is almost the same, and both types are
extended dominantly in one of the dimensions(both chemi-
cals have percolated). However, in the case of a spotty struc-
ture [Fig. 2(I)], chemicalU appears as separate round clus-
ters or spots, whereas chemicalV forms one connected
cluster(V has percolated). Between these two limiting cases
there is the transition region, depicted in Figs. 2(D)–2(F),
where U-dominated clusters appear as spots and stripes in
the form of a “string-of-pearls.”

In order to compare the numbers of clustersNc
d for sys-

tems of different size, we normalize it by dividing withNc
d,

whereNc=kcL /2p, L denotes the linear system size(square
or cube in 2D or 3D), andd the spatial dimension.Nc

d is the
maximum number of spherically symmetric clusters in a
d-dimensional system as if the clusters were uniformly dis-
tributed and the effect of boundaries was neglected. Due to
the periodicity of the chemical structure, the number of clus-
ters in thed-dimensional system can be estimated to beNd

=sNc+1/2dd. However, an additional correction is required
to take into account the effect of boundaries. Now, one can
estimate the number of additional partial clusters due to
boundaries by approximating the length(area) of the bound-
ary and the number of clusters within this domainsdNd−1d.
As a result of this discussion we propose the scaling function
for the number of clusters to be

FdfNsCd,Ncg =
NsCd
Nc

d S1 −
d

Nc + 1
2
D , s16d

whereNsCd is the calculated number of clusters for control
parameterC. By revising the Hoshen-Kopelman algorithm
one could have directly calculated the number of clusters by
taking periodicity into account, in which case Eq.(16) re-
duces toFd(NsCd ,Nc)=NsCd /Nc

d. However, this approach
was not implemented and the normalization was carried out
by using the Eq.(16).

In the following section we will present the results of our
numerical simulations. We have studied the connectivity or
the number of clusters in the patterns as a function of the
control parameterC, which adjusts the morphology selection
between stripes and spots.

V. SIMULATION RESULTS

The first result is shown in Fig. 3, where we have plotted
the number ofU clusters, calculated using the Hoshen-
Kopelman algorithm, as a function of the nonlinear param-
eterC in Eq. (2). Here we did not start from random initial
configuration, but used instead the final configuration of the
previous simulation as the initial configuration for the next
simulation and let the pattern stabilize for 250 000 iterations.
In this way we could change the control parameterC con-
tinuously and observe hysteresis(the direction is shown by

FIG. 2. Transition from stripes to spots. The patterns obtained
after 50 0000 iterations in a 1003100 system withkc=0.45. Black
corresponds to areas dominated by chemicalU (zeros) and the
lighter color chemicalV (ones). C varies from 0.007 to 1.000 from
A to I.
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the arrows in Fig. 3) characterized by the number of clusters.
It should be noted that as the control parameter is changed
continuously, the present symmetry tends to persist. The bi-
furcation analysis discussed before predicted that the bista-
bility for 0.084,C,0.161, with which our numerical result
shown in Fig. 3 does not match precisely. For longer simu-
lation times the hysteresis loop tended to become even wider,
i.e., the bistability region widens.

The hysteresis has recently been observed while studying
the space-averaged density of one substance in a one-
dimensional reaction-diffusion system as a function of a
feeding parameter[55]. We observe similar behavior also
with respect to the amplitude of the concentration wave in
the Turing system as earlier[37,56]. We suggest that a tran-
sition exhibiting hysteresis can be further characterized by
measuring the number of clusters in the case of reaction-
diffusion systems forming spatial patterns. In addition to the
hysteresis effect we have also observed a slowing down of
the dynamics while the parameterC approaches the param-
eter region corresponding to morphological changes. For
bistableC values the system requires more simulation steps
to achieve the final steady state. This has been studied earlier
both numerically[57] and experimentally[37,58] in bistable
chemical systems.

The competition between hexagonal spotty patterns and
stripe patterns has previously been addressed in the field of
pattern formation both experimentally[37,59] and numeri-
cally [38,60–62]. These studies do not, however, provide a
method to investigate the morphological changes, but only
corroborate the analytically predicted existence of both sym-
metries. In the following, we will try to find some insight
into the morphological transition resulting in from the bista-
bility of stripes and hexagonal spots. In order to study the
transition we employ extensive numerical simulations and
measure the number of clusters. The results were averaged
over up to 20 simulations for each value ofC. We carried out
studies for several system sizes in order to guarantee the
generalizable nature of our results.

In Fig. 4 we plot the averaged scaling function
F2sNsCd ,Ncd for U-clusters againstC for several different
system sizes. The simulations were started from random ini-
tial configurations of the chemicals for each value ofC. Ne-
glecting the number ofV-clusters does not affect our conclu-
sions, since the curves would be symmetrical(number ofV
clusters goes to 1 for highC). From Fig. 4 one can clearly
see that the transition takes place at those values of the pa-
rameterC for which bifurcation analysis predicted the sys-
tem to be bistable(see Sec. III) and indeed the number of
clusters characterizes the transition. In addition, it can be
seen that the normalization function of Eq.(16) scales the
number of clusters in such a way that the results for different
system sizes agree within reasonable deviations.

The smoothness of the curve in Fig. 4 as compared to the
data plotted in Fig. 3 is due to averaging. The boundaries of
the hysteresis loop in Fig. 3 are not well-defined and the
transition in a single simulation may take place for any value
of C within the region of bistability. Thus Fig. 4 can be
thought of as a normalized sum of steplike functions. In a
system exhibiting bistability one cannot predict the exact
transition value for the control parameterC. Based on Fig. 4,
however, it can be proposed that the predictions of the bifur-
cation analysis have the power to approximate the dynamics
of a bistable pattern forming system in a probabilistic man-
ner. For example forC=0.15 the bifurcation analysis pre-
dicts a bistability, but based on our simulation results, we
suggest that when the system is initialized to a random state
it will tend to evolve towards a hexagonal spotty pattern.

If one carries out the simulations for very small system
sizes, finite-size effects can be observed. For small system
sizes theF2(NsCd ,Nc) curves become more steep in the tran-
sition region and the valueC for which the transition takes
place seems to be affected by the finite size of the system.
This would suggest that in the limit of small systems, the
transition would become almost discontinuous. However, the
system cannot be made infinitely small since the(periodic)
boundary conditions start to affect the behavior of the sys-

FIG. 3. The number ofU clusters as a function of the nonlinear
parameterC, which was varied continuously throughout the sweep
in a single simulation. The two-dimensional 1003100 pattern was
given 250 000 iterations for stabilization at each value ofC skc

=0.86d. The arrow heads describe the direction of the sweep imply-
ing hysteresis.

FIG. 4. The normalized number ofU clusters as a function ofC
in two-dimensional systems. System sizes areL=75, L=100, L
=175, L=250, andL=500. The results were averaged up to 20
simulations and they match with the analytical prediction for the
bistable regime given by 0.084,C,0.161.
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tem. As discussed earlier the spots tend to nucleate from
topological defects, or dislocations, of the striped pattern,
i.e., from the points where the stripes coincide(Fig. 2). In the
case of a small system even one dislocation can affect the
morphology of the whole system and thus quickly transform
stripes into a lattice of spots. In a larger system many dislo-
cations have to appear at various sites to give rise to spots
which in turn make the appearance of more spots favorable.

So far we have discussed our simulation results in 2D
systems but we have also studied the connectivity transition
extensively in 3D. In this case stripes and spots become
lamellae and spherical droplets, respectively. Figure 5 shows
the concentration isosurfaces obtained in computer simula-
tions with random initial configuration for four different val-
ues ofC. From Fig. 5 one can observe that in three dimen-
sions one cannot obtain pure planar lamellae or organized
spherical structures(FCC, BCC or HPC) spontaneously from
random initial conditions. The lamellae we obtain in three
dimensions is a periodic continuous, aligned and crossing
lamellae without local organization and it resembles a mini-
mal surface solution[see Fig. 5(A)]. The characterization of
the various surfaces is difficult, but luckily the specific orga-
nization of qualitatively similar structures does not signifi-
cantly affect the measured clustering in the structures. The
fact that the cylindrical phase is predicted to be stable in sc
lattice for all parameter valuesC makes the structure selec-
tion even more complicated, especially in the transition re-
gion.

It is supposed that in 3D the transition does not occur at
the same point with respect toC as in 2D since the third
dimension gives to the clustering process one more degree of
freedom, and thus it is easier for the structures to connect.
This is indeed what one finds. Figure 6 depicts the normal-
ized number of clusters for four different system sizes. One
can see that the behavior of the system is different from that
in two dimensions. Now, the transition occurs at a higher
value of C, since a relatively smaller cubic nonlinear cou-

pling favoring lamellar structures is sufficient for increasing
connectivity in three-dimensional space.

The bifurcation analysis does not predict very well the
transition domain in the three-dimensional case. The stable
lamellae was predicted to change to stable spherical droplets
at C=0.355, which corresponds to the border of the transi-
tion region in Fig. 6. The cylindrical structures were pre-
dicted to be stable for allC, which results in a bistability. The
insufficient nature of the bifurcation analysis may further be
explained by the sc-lattice approximation. On the other hand,
the stability of twisted lamellar surfaces could not be ana-
lyzed under any symmetry condition. Unlike in 2D we did
not observe any finite-size effects for the smallest possible
system sizes.

VI. CONCLUSIONS

In this study, we have investigated the connectivity of
spatial patterns generated by the reaction-diffusion mecha-
nism both in 2D and 3D. This was done by applying cluster-
ing analysis for the dominating chemical. The numerical
simulations were consistent with the predictions drawn from
the bifurcation analysis, and the system showed a transition
in the proximity of the predictedC-value irrespective of the
individual system size. The agreement with theory turned out
to be closer in the 2D case than in 3D, since in 2D there is a
simple transition between monostable patterns through a
bistable regime. In 3D the analytical prediction of the
changes in connectivity was more difficult, since it predicted
the system to be bistable for all parameter values and no
bistability was predicted between lamellar and spherical
structures in the sc lattice. On the other hand, for the bcc
lattice the bifurcation analysis did predict a bistability, but
the bistable values of the control parameter did not agree
with the results of the numerical simulations as well as the
predictions for an sc lattice. Although the bcc structures are
stable in Turing systems, it seems that the system cannot find
them when the simulation is started from a random initial

FIG. 5. Transition from a twisted minimal surface to spherical
shapes in a three-dimensional system of size 50350350. The
structures were obtained after 500 000 iterations withkc=0.86. The
visualization was carried out by plotting the middle concentration
isosurface. Parameter values:(A) C=0, (B) C=0.44, (C) C=0.53,
and (D) C=1.0

FIG. 6. The averaged normalized number ofU clusters as a
function of C in a three-dimensional systems. System sizes areL
=30, L=40, L=50, andL=75. The bifurcation analysis predicts
unstable lamellar structures and stable sc droplets forC.0.361,
whereas stable cylindrical structures are predicted for allC,0.65.
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configuration. In large systems of dissipative quasiparticles
this kind of behavior has been hypothesized to be due to an
instability of transient structures[50].

The bistability of two different patterns is observed in a
variety of chemical[4] and biological systems[17,63]. The
approach of this study brought more insight into the pattern
selection in Turing systems. We have shown that at least in
the context of Turing systems the pattern selection of a
bistable system can be predicted probabilistically. By this we
mean that although one cannot determine in advance the tra-
jectory in the phase space based on the parameters, one may
give approximate estimates for the state selection as the
structure develops from random initial conditions. We have
also shown that the nonequilibrium morphological transition
has characteristics similar to first order phase transition, i.e.,
hysteresis is observed. The hysteresis can be seen not only
with respect to the amplitude of the chemical concentration
as earlier, but also with respect to the morphological
changes, i.e., the averaged number of clusters.

The fact that the system size does not affect the clustering
and the pattern selection at all(given that system is not too

small) implies that the Turing mechanism is very general and
it is applicable to systems of various sizes. Also the facts that
the pattern selection can be predicted probabilistically as the
evolution starts from random initial conditions and that the
established patterns tend to persist even under conditions for
which they are not predicted to be stable could be important
for morphogenesis.
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