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It is well known that in two dimensions Turing systems produce spots, stripes and labyrinthine patterns, and
in three dimensions lamellar and spherical structures, or their combinations, are observed. In this paper we
study transitions between these states in both two and three dimensions. First, we derive the regions of stability
for different patterns using nonlinear bifurcation analysis. Then, we apply large scale computer simulations to
analyze the pattern selection in a bistable system by studying the effect of parameter selection on morphologi-
cal clustering and the appearance of topological defects. The method elaborated in this paper presents a
probabilistic approach for studying pattern selection in a bistable reaction-diffusion system.
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I. INTRODUCTION the exact three-dimensional structure based on two-

Nature presents a fascinating diversity of patterns irP"F“e”S'O”a' projections. Wh|le_|n two d|men_S|0ns one ob-
plants, animals and other natural formations as results dfiNS SPOtS, stripes or labyrinthine patterns, in three dimen-
complex physico-chemical processdd]. Alan Turing sions C(_)mplex.sha.tpes of, e.g., lamellae, spherical droplets
showed in 1952 that a simple system of coupled reaction@"d their combinations appear. .
diffusion equations for two chemicals could give rise to finite _Préviously, studies of Turing systems have typically con-
wavelength spatial patterns due to a mechanism callef§éntrated on reaction kinetics and stability aspese®, e.g.
diffusion-driven instability[2]. These so-called Turing pat- [51~33). while the issue of pattern structure and its connec-
terns and other related chemical systems have ever sin#y!ty has repelved less attention. Here, we focus on connec-
been under intensive theoretical stu@y4] and similar pat- Ivity of Turing patterns and its dependence on the param-

tern forming mechanisms have been connected to varioueterS of the system. We present a simple way to

. . . . &uantitatively characterize Turing structures and their con-
physical systems such as gas—dlscharge. sysieréis |rrad|-. nectivity based on statistical analysis of the patterns obtained
ated material§7], catalytic surface reactior{8] and semi- o sjmulations. The connectivity of a pattern with given
conductor nanostructurgs].

; parameters cannot be predicted analytically in the presence
Turing systems have also been proposed to account fQst pjstability of both striped and spotty patterns. We also
pattern formation in many biological systems, e.g., color patstydy the “connectivity transition,” which occurs as the pa-
terns on fish skin[10,11, butterfly wings[12] and lady rameters of the system are between those giving rise to either
beetles[13] to mention a few. The first experimental evi- monostable spots or stripes.
dence of a Turing structure was not reported until 1990 by State selection is a fundamental problem in nonequilib-
Castetset al. [14], who observed a sustained standing non-rium physics and appears in very different contexts ranging
equilibrium chemical pattern in a single-phase open reactoifrom driven superconductivity{34] to chemical systems
with a chloride-iodide-malonic aci@€CIMA) reaction. There [3,35. In this paper we address this problem in the context
has been an increasing interest to develop simple and plawf reaction-diffusion systemg36] and characterize the pat-
sible mathematical models that could describe, at least qualtern selection in the presence of a bistability by analyzing the
tatively, these pattern formatiofi$5-17. statistical properties of the resulting patterns in systems with
The forms and variations of patterns generated by Turinglifferent sizes. The transition between monostable patterns
systems have been studied analytically and numerically bgan occur only through a bistable regime, where the pattern
investigating the conditions for instabilif}L.8], assuming in-  selection will be shown to be probabilistic. This nonequilib-
homogeneous diffusion coefficients9], by introducing do-  rium transition bears some resemblance to a first order equi-
main curvaturg20] or growth[21], and both homogeneous librium phase transition: the system exhibits hysteresis. This
[22] and periodic suppressidi23]. In addition, symmetries phenomenon has been addressed previously in the context of
in Turing systems are of great interest, since they may haveeaction-diffusion systems. Hysteresis has been observed in
biological relevance; see, e.g., Rdi$9,24,25. On the other experimenta|37] as well as numericdB8] studies of Turing
hand, chemical experiments have confirmed both theoreticalystem, but the transition mechanisms have not been studied
and numerical results and brought more insight concerningn great detail.
the chemical dynamics of dissipative structuj26—29. Re- This paper is organized as follows. In the next section, we
cently, we have studied numerically the effect of dimension-briefly introduce a reaction-diffusion model of the Turing
ality by simulating three-dimensional Turing systefi2g]. kind (the BVAM mode) and in Sec. Ill we present the rel-
The experimental study of three-dimensional Turing struc-evant results of the nonlinear bifurcation analysis. Then, in
tures[30] is rather cumbersome since it is hard to determineSec. IV we discuss the concept of connectivity in these sys-
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tems and the methods for characterizing the transition be- ,_ v(Db+1)

tween different patterns. In Sec. V, we present results from = "o 3
comprehensive numerical simulations. Finally, in Sec. VI we

draw some relevant conclusions. which has here been determined for the chse-1 (set to

obtain only one stable state atv=0 in the absence of
diffusion). By parameter adjustment it is possible to allow
only a few unstable modes, which can be done with several

A Turing system models the evolution of the concentra-different parameter sets. Based on the linear analysis we
tions of two chemicals, or morphogens. It is represented igh0se two sets of parameters for the numerical calculations.

Il. THE MODEL

general by the following reaction-diffusion equations First, D=0.516,a=1.112,b=-1.01 andv=0.45 for the criti-
cal wave numbek;=0.46, and second)=0.122,a=2.513,
U,=D,V2U + f(U,V), b=-1.005 andv=0.199 corresponding tk.=0.86. In a dis-

cretized three-dimensional cubic system there is more mode
degeneracy than in two dimensions, since the wave number

V,=DyV3V+g(U,V), (1) s of the form
whereU = U(X,t) andV=V(X,t) are the morphogen concen- |l2| - @\m (4)
trations, andD;, and Dy, the corresponding diffusion coeffi- L v
cients setting the time scales for diffusion. The reaction ki- ) )
netics is described by the two nonlinear functidrnsndg. whereL is the system size ang, ny, n, are the wave number

In this study we focus on a Turing model introduced by Nt€ger indicesin a two-dimensional system,=0).

Barrio et al. [11], in which the reaction kinetics is developed

by Taylor expanding the nonlinear functions around a sta- I1l. NONLINEAR ANALYSIS

tionary solution (U.,V,). The Barrio-Varea-Aragon-Maini ) N ) ) .
(BVAM ) model is phenomenological one and it is not based The 'I|near stability analysis tha’g we discussed briefly
on any particular experimental chemical reaction. If terms off00Ve is able to render only a partial picture of the phase
the fourth and higher order are neglected, and the remainingPace behavior of inherently nonlinear Turing systems. In

equations are nondimensionalizEg®], the model reads as ~ [aCt One can expect a wide variety of stable patterns with
different symmetries formed in the system. In order to get a

better insight to the nonlinear effects of the system we extend
the analysis from the linear to the weakly nonlinear regime.
The latter is often called bifurcation analysis and it yields
vi=V2 + v(bv + hu+ uv?+ Cw), (2) analytical forms for the amplitudes of different symmetries
[41,42. The aim of the bifurcation analysis is to find a de-
whereu=U-U, andv=V-V, are the concentration fields. scription of the concentration fieM=(u,v) in terms of the
Here the parametd® determines the relative strength of the active Fourier modes, i.e.,
guadratic and cubic nonlinear termi3, is the ratio of the - -
diffusion coefficients of the two chemicals, amdacts as a W:WOE (V\/J-e'ki'r +\/\/er"“1*), (5)
scaling factor. Settindp # 1 is a necessary but not sufficient k;
condition for the diffusion-driven instability to occur in two
and three dimensiongt0]. For details about the instability Wherew, defines the direction of the active modes ang
and the linear stability analysis of the model we refer theand\/\f; are the amplitudes for modésand —;, respectively.
reader to Barricet al. [11,29. Notice that the sum of complex conjugates is real. The un-
The BVAM model of Eq.(2) has been devised in such a stable modes have slow dynamics, whereas the stable modes
way that one can adjust the relative strength of the quadratitelax quickly and are said to be slaved to the unstable modes.
and cubic nonlinearities. These terms dominate the instability We have carried out full nonlinear analysis of the BVAM
by imposing symmetry requirements to the system and thusodel by mapping the dynamics of the chemical system to
they dictate the pattern selection. In this way our model isan equivariant amplitude space using the center manifold
different from the Brusselatof3] or the Lengyel-Epstein reduction method43]. The amplitude equation system con-
[32] models which have only one nonlinear term and thesists of equations for all the unstable modes which are of the
morphology of the resulting pattern is determined by thefollowing form
value of the bifurcation parameter, i.e., the distance to the

U =DV2u+ v(u+av - uw?-Cw),

onset of instability. daw, _
From the linear stability analysigl1,29 we obtain the dt =AW+ (W, . W), (6)

dispersion relation and the conditions for the diffusion-
driven instability as the region irk-space with positive where the exact form of the terfg(W,, ... ,W,) depends on

growth rate, i.e., eigenmodes=uyeM andv=vee with ei-  the lattice under study. The eigenvalugmay be written in
genvalues R (k)} > 0. In addition, one can analytically de- the vicinity of the onset of instability by using a linear ap-
rive the modulus of the critical wave vector proximation
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d\ (v -2R) dimensions there is one branch corresponding to stripes with
A= a — (@-ag)= [W(1+b) - 2R[v-R]’ (7)  stationary amplitudesWi=/(A;/g)€”t and W;=W5=0.
c When k,=0.86 the stability analysis predicts this branch to
whereR:Dkﬁzv(Db+1)/2. be stable forC<0.161. On the other hand, there are two
The application of bifurcation analysis to two- equilateral branches of hexagons defined by
dimensional reaction-diffusion systems has become almost a

routine procedurg4,44]. However, the three-dimensional ST+ T2+ ang[1 + 2¢]
case is much more challenging. Pattern selection in a three- IWE| = [WE| = |Wg| = - c . (12
dimensional chemical system is not straightforward, but 29(1 + 2«)

there are multiple possible states that must be taken into
account depending on the symmetry under study. The latticeghere the parameters are those defined by @ys(11). The
typically studied in three dimensions are simple cutso, branch corresponding to the plus sign in EtR) is always
body-centered cubigbcc) and face-centered cubffcc). Cal-  unstable. The other branch of hexagons is predicted to be
lahan and Knobloch have been among the first to studgtable for 0.084 C<0.611. Since the center manifold re-
three-dimensional pattern selection using nonlinear analysiguction evaluates the dynamics by weakly nonlinear approxi-
under all these different symmetri¢45-47. In this study  mation, the results of the analysis may be questioned for
we have followed their computational procedure to calculatgtrong nonlinearities corresponding to large valuesCof
the coefficients of the amplitude equatidgag]. The fact that Based on extensive numerical simulations we have found
the strength of the nonlineariti€€) governs the pattern se- that the hexagonal phase is undoubtedly stable evei€ for
lection in the BVAM model necessitates some additional al=1.57. However, the most important result of the bifurcation
gebraic manipulations since we have to find the stability as analysis is the region of bistability is predicted to be
function of the nonlinear coefficier@. 0.084<C<0.161. Within this parameter domain both stripes
In a two-dimensional Turing system the patterns of inter-and hexagonal spotty patterns are predicted to be stable for
est are typically either stripes aligned in parallel or spots,=0.86.
organized in a hexagonal lattice. Depending on the system In a three-dimensional Turing system the structures that
parameters, one of these patterns may spontaneously ariseve been studied numerically are planar lamellae, hexago-
from random initial conditions in computer simulations. The nally packed cylinderéHPC) and spherical shapes organized
bifurcations are thus studied in a hexagonal lattice defined bin a bcc symmetry, which have been obtained in simulations
three unit wave vectorg; separated by an angle of723.  of the Brusselator modg#8,49. These structures are stable
Since the base vectors of the hexagonal lattice are not liralso in the BVAM model of Eq(2) if they are the initial
early independent—k;—k,=ks) the lattice is said to exhibit configuration of the system, but recently we have shown that
resonant modes, i.e., the coupling of two other modes mathe system cannot always find these perfect states, when the
have effects on the growth of the third mode. Then, the amsimulation is started from random initial conditiof9]. We
plitude equation system corresponding to the two-are particularly interested in the structures formed by self-
dimensional hexagonal lattice of the critical modeis de-  organization from an arbitrary initial state due to their sug-
fined the normal form given by gested relevance to morphogenesis. From a random initial
state in three dimensions we were not able to obtain spheri-
awi =AW, + FM+1M+2 - g[|V\/J-|2 + K(IV\/,-+1|2 + |VVJ-+2|2)]W-, cal shapes organized in a perfect IattiC(_a. Furthermore, pla}n_ar
dt lamellar structures have not been obtained from random ini-
(8) tial state, but instead found complex minimal surfaf2g.

Next we approximate the three-dimensional pattern selec-
wherej=1, 2, 3(mod 3 and the coefficient§’, g and« can  tjon by considering an sc lattice, which is a coarse approxi-
be presented in terms of the parameters of the originahation for the forming symmetry. We have also carried out
reaction-diffusion systerfEq. (2)]. This is done by carrying pjfurcation analysis for the bce lattice, but it does not seem
out a rigorous calculation using the center manifold reductg serve as a good approximation for the structures resulting

tion, which yields from random initial condition$39]. In the sc lattice there are
. _ 2vaRv’m . BS resonant modes and the amplitude equations are defined
(v+bv-2R)\(v+br-2R)(v-R)’
2(y— aw _ 2 2 2
g - 3ov (V ZR)R (10) dt - )\vaj - g[|\Nj| + K(|\Nj+l| + |\Nj+2| )]\N]v (13)
(v+br-2R?*(v-R)’
k=2, (11)  Where again=1, 2, 3,(mod 3 andg and « are the coeffi-

_ cients given by
where we have denoteRl:Dkﬁzv(Db+ 1)/2. The linear co-

efficient of Eq.(8) is given by Eq.(7). 5
After derivation of the parametergEgs. (9)«(11)] one g= —b[C%(8v-23R) - 27R|(r - 2R) (14)
must analyze the stability of the bifurcating branches. In two 9(v+br-2R?*(r-R) '
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001 —p | I I spots(2D) or spherical drople{3D) structures as predicted
— ¥ st e by the bifurcation analysis. The transition and the pattern
_____ ¥ pHex i selection within the bistable transition regime will be char-
B pLam .,.."‘“" acterized by concentrating on the connectivity of the struc-
G L tures defined below.
— [ -
g t‘.*_...:;_._'-'_";._—,-i'. ...............
0 I Ty RN IV. CONNECTIVITY
o ..“,. \".“.'-4. .................. .\.\ . - .
P SiUUNOPRRIS b p N RN Numerical calculations were performed using a standard
‘\-‘\ ‘\\\.\ Euler method(see the next paragraph for detail$n the
Tl N numerical simulations of Eq2) one deals with two concen-
““‘w.},.N tration fields with characteristic wave lengths. In order to
Sy | | ‘.‘\\ visualize this, the concentration of only one of the chemicals
001, 0.1 02 L0 0.4 03 is typically plotted with a gray scale, since in these systems

FIG. 1. The set of eigenvalugd C) determining the stability of

the fields are in antiphase, i.e., if there is a large amount of
chemicalU in some subdomain, the concentration of chemi-

different structures, i.e., the stripes and hexagonal patterns in 20%@l V would be low there. These concentration fields vary
and lamellae, cylinders, and sc droplets in 3D. The symmetries aréontinuously having diffuse boundaries. Now, the connectiv-

stable foru(C)<0.

_1gC%8v-7R) - 3R]
T Cr-2R) - 2R’

(15

ity of chemicals in the system can be studied by defining

subdomains dominated by either chemidabr V, provided

that the amplitude of the pattern is large enough. If we define
the boundary as the interface between subdomains domi-
nated by different chemicals, we can easily locate the bound-
aries, where the concentrations change rapidly, typically

whereR is the same as before, and the linear coefficient ofyithin one or two lattice sites of the discretized system. Now,

Eq. (13) is given by Eq.(7).

if two points belong to the same domain, i.e., are not sepa-

The branch corresponding to planar lamellae is given byated by a boundary, they are considered connected. The

the stationary amplitudel$\§|=v\./g, W5=W5=0 and pre-  definition of the boundaries in this way is only conceptual in
dicted to be stable fo€ <0.361. For the square packed cyl- the sense that in thd-dominated domains the concentration
inders, which in an sc lattice correspond to the HPC strucof V does not have to be zero, only much less than the con-
tures [49], one obtains the amplitudesW;|=|W;|  centration ofU.
=\\¢/g(x+1), W5=0 and the stability for alC<0.650. The In this study the numerical simulations were carried out
isotropic branch of spherical structures in an sc lattice has thby discretizing the spatial dimensions into a squ&®) or
amplitudes/W5|=|W5|=|W5|=\./g(2x+1) and is predicted cubic cell(3D) lattice and calculating the Laplaciafs3] in
to be stable for 0.36& C<0.589. It should be noted that the Eq. (2). In these types of problems the finite difference
analysis does not predict bistability of lamellar and sphericascheme and Euler’'s method are often employidd26,54. It
structures. On the other hand, the cylindrical phase is preis possible, and sometimes even desirable, to use the Euler’s
dicted to be stable for alC. method since it is fast and stable under appropriate condi-
In Fig. 1 we have collected the eigenvalues of the lineartions, which can be checked by simple linear stability analy-
ized amplitude systems in 2D and 3D obtained from E8s. sis. The Euler scheme has been shown to be stable for our
and (13), respectively. The most relevant outcome of bifur- model even in such circumstances as a disk, where step con-
cation analysis is that it predicts the stability of differenttrol was needed25]. In all our simulations we chose the
symmetries and the parameter domain, where the systespatial discretization to béx=dy=dz=1.0 and the equations
exhibits bistability. The exact morphology selection within of motion were integrated in time using the time st
the bistable domain cannot be predicted, which is why we=0.05. The resolution of the spatial discretization did not
employ a new connectivity measure to be introduced in theffect the pattern selection provided that the characteristic
next section. An additional inadequacy of the bifurcationwave length of the pattern was set to be a multiple times the
analysis is that in three dimensions it cannot predict the stdattice constan{dx). The boundary conditions were chosen
bility of more general three-dimensional structures such a$o be periodic and the initial concentrations of the chemicals
twisted grain boundariept9] or periodic minimal surfaces were Gaussian perturbations around the trivial stationary
[29], which arise in simulations started from random initial state(0,0) with a variance significantly lower than the am-
conditions. plitude of the final patterns. In order to study the connectivity
For a more detailed discussion of topics related to nonlinin two- and three-dimensional Turing patterns, we performed
ear analysis, we refer the reader to a more technical pap@xtensive simulations for system sizes up ta B lattice
by one of us[39]. In this study, we perform numerical cells and let the system to evolve up tx20° time steps in
calculations in which we vary the parameter[in Eq. (2)] order to reach a stationary state.
that controls the appearance of either stripes or spots. By In Fig. 2 we show changes in the two-dimensional con-
gradually changing this control parameters we observe aentration fields for different values of the quadratic nonlin-
transition from stripeg2D) or lamellar (3D) structures to ear coefficientC in Eq. (2). The patterns in Fig. 2 are snap-
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generality, we can assign zeros and ones to the whole lattice
based on the chemical that dominates a given domain. With
this mapping we consider the number of clusters, which is
calculated using the well-known Hoshen-Kopelman algo-
rithm [52] as in typical percolation problems. In Fig(”&

one can see that in the case of stripes the numbél- @ind
V-dominated clusters is almost the same, and both types are
extended dominantly in one of the dimensighsth chemi-
cals have percolatgdHowever, in the case of a spotty struc-
ture [Fig. 21)], chemicalU appears as separate round clus-
ters or spots, whereas chemicdl forms one connected
cluster(V has percolated Between these two limiting cases

MORPHOLOGICAL TRANSITIONS AND BISTABILITY... PHYSICAL REVIEW E 70, 066202(2004
there is the transition region, depicted in FigsD2-2(F),
where U-dominated clusters appear as spots and stripes in

the form of a “string-of-pearls.”

FIG. 2. Transition from stripes to spots. The patterns obtained In order to compare the numbers of clustdsfor sys-
after 50 0000 iterations in a 100100 system withk,=0.45. Black  tems of different size, we normalize it by dividing Witﬂg,
corresponds to areas dominated by chemilda(zerog and the  whereN.=k.L/2, L denotes the linear system si@xjuare
lighter color chemicaV (oneg. C varies from 0.007 to 1.000 from or cube in 2D or 3, andd the spatial dimensiorNg is the
Atol. maximum number of spherically symmetric clusters in a
. . . d-dimensional system as if the clusters were uniformly dis-
shots taken after 50000 iterations in order to make g ioq and the effect of boundaries was neglected. Due to
transition more gradual and visible within a wider parameter,

range. This causes the patterns not being perfectly symmetrtge periodicity of the chemical structure, the number of clus-

and leads to distortions. If one continued simulations for al _ers N theg—dlmensmnal system can be estimated tohﬁe
indefinitely long time, Figs. @)—2(E) would most likely =(N;+1/2)°% However, an additional correction is required

evolve towards aligned stripes, whereas FigeF)2(1) to take into account the effect of boundaries. Now, one can

would evolve towards a hexagonal lattice of spots, i.e., th&stimate the number of additional partial clusters due to
presented patterns are transient. boundaries by approximating the lengtdreg of the bound-

When the cubic term dominatgsmall C), the resulting  ary and the number of clusters within this dom&ifiN").
stationary pattern is striped with a small number of imper-As a result of this discussion we propose the scaling function
fections, see Fig. (). These imperfections can be consid- for the number of clusters to be

ered as topological defects, or dislocations, which could N(C) d
serve as nucleation sites for spots. More dislocations appear FAN(C),Ne] = — (1 - 1), (16)
[see Figs. @) and 2C)] when the relative strength of the Ne Ne+3

quadratic term is made larger. As the quadratic term grows,,

hereN(C) is the calculated number of clusters for control
more spots nucleate and they arrange themselves to hexago- - .
i . . - parameterC. By revising the Hoshen-Kopelman algorithm
nal structure and at the same time getting rid of the remaint

ing stripes[see Figs. @)—2(H)]. Similar nucleation pro- one could have directly calculated the number of clusters by

cesses have earlier been observed in numerical simulatiotaklng periodicity into account, in which case H46) re-

n _ d .
of a reaction-diffusion system generating dissipative quasigsuces toF4(N(C),Ng)=N(C)/N;. However, this approach

particles[50]. Finally, when the quadratic term is enhanced\t')""’ls not i:?]pleEmelrged and the normalization was carried out
even further, and only spots remdfrig. 21)]. As the present y using the Eq(16).

discussion concerning the nucleation of structure is purel In the foII_owmg_schon we will present the results (-)f- our
qualitative it should be mentioned that, e.g., Hagberg ané}‘umencal simulations. We have studied the connectivity or

Meron have previously employed a more rigorous approach ' number of cluster_s in the patterns as a function OT the
P y empioy 9 bp control paramete€, which adjusts the morphology selection

[51]. They studied the dynamics of curved fronts in bistableb w i q "
two-dimensional media using a set of kinematic equations. etween stripes and spots.
In this sequence of simulations the transition from stripes

to spots was enforced by_using a sing_le control parant&ter V. SIMULATION RESULTS
Nevertheless, the transition from striped to spotty pattern
seems to happen quite abruptly with respecCtdNote that The first result is shown in Fig. 3, where we have plotted

the difference in parameters between the figures is not corthe number ofU clusters, calculated using the Hoshen-
stant: From A to [,C=0.007, 0.091, 0.116, 0.124, 0.129, Kopelman algorithm, as a function of the nonlinear param-
0.135, 0.169, 0.258, 1.000. In this context and kgr0.45  eterC in Eq. (2). Here we did not start from random initial
the bistability is predicted to occur for 0.023C<0.139, as  configuration, but used instead the final configuration of the
discussed irf39] in more detail. This corresponds to Figs. previous simulation as the initial configuration for the next
2(B)-2(F). simulation and let the pattern stabilize for 250 000 iterations.
Now, let us discuss the patterns in Fig. 2 from the clus-n this way we could change the control paramefecon-
tering point of view. In order to simplify this without loss of tinuously and observe hysteregtie direction is shown by
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FIG. 3. The number ob clusters as a function of the nonlinear _ FIG- 4. The normalized number f clusters as a function &
parametelC, which was varied continuously throughout the sweep!n Wo-dimensional systems. System sizes hrer5, L=100, L
in a single simulation. The two-dimensional 10000 pattern was =~ 179 L=250, andL=500. The results were averaged up to 20

given 250 000 iterations for stabilization at each valueGCofk, si_mulations _and they match with the analytical prediction for the
=0.86. The arrow heads describe the direction of the sweep implyPistable regime given by 0.084C <0.161.
ing hysteresis.

- . In Fig. 4 we plot the averaged scaling function
the arrows in Fig. Bcharacterized by the number of clusters. ¢ (N(C),N,) for U-clusters agains€ for several different

It should be noted that as the control parameter is change : : : -
continuously, the present symmetry tends to persist. The b stem sizes. The simulations were started from random ini

furcation analysis discussed before predicted that the bistak'—al configurations of the chemicals for each valueCofNe-
bility for 0.084<C<0.161, with which our numerical result glecting the number o¥-clusters does not affect our conclu-
shown in Fig. 3 does not match precisely. For longer simuSioNS: since the curves would be symmetricalmber ofV
lation times the hysteresis loop tended to become even widef!USters goes to 1 for higlt). From Fig. 4 one can clearly
i.e., the bistability region widens. see that the transition takes place at those values of the pa-
The hysteresis has recently been observed while studyingmeterC for which bifurcation analysis predicted the sys-
the space-averaged density of one substance in a ontm to be bistablésee Sec. Il and indeed the number of
dimensional reaction-diffusion system as a function of aclusters characterizes the transition. In addition, it can be
feeding parametef55]. We observe similar behavior also seen that the normalization function of E{.6) scales the
with respect to the amplitude of the concentration wave imumber of clusters in such a way that the results for different
the Turing system as earli¢d7,56. We suggest that a tran- system sizes agree within reasonable deviations.
sition exhibiting hysteresis can be further characterized by The smoothness of the curve in Fig. 4 as compared to the
measuring the number of clusters in the case of reactiordata plotted in Fig. 3 is due to averaging. The boundaries of
diffusion systems forming spatial patterns. In addition to thethe hysteresis loop in Fig. 3 are not well-defined and the
hysteresis effect we have also observed a slowing down dfansition in a single simulation may take place for any value
the dynamics while the paramet€rapproaches the param- of C within the region of bistability. Thus Fig. 4 can be
eter region corresponding to morphological changes. Fothought of as a normalized sum of steplike functions. In a
bistableC values the system requires more simulation stepsystem exhibiting bistability one cannot predict the exact
to achieve the final steady state. This has been studied earlitgansition value for the control parametérBased on Fig. 4,
both numerically{57] and experimentally37,58 in bistable  however, it can be proposed that the predictions of the bifur-
chemical systems. cation analysis have the power to approximate the dynamics
The competition between hexagonal spotty patterns andf a bistable pattern forming system in a probabilistic man-
stripe patterns has previously been addressed in the field #fer. For example folC=0.15 the bifurcation analysis pre-
pattern formation both experimental[37,59 and numeri- dicts a bistability, but based on our simulation results, we
cally [38,60—62. These studies do not, however, provide asuggest that when the system is initialized to a random state
method to investigate the morphological changes, but onlyt will tend to evolve towards a hexagonal spotty pattern.
corroborate the analytically predicted existence of both sym- If one carries out the simulations for very small system
metries. In the following, we will try to find some insight sizes, finite-size effects can be observed. For small system
into the morphological transition resulting in from the bista- sizes theé=;(N(C),N,) curves become more steep in the tran-
bility of stripes and hexagonal spots. In order to study thesition region and the valu€ for which the transition takes
transition we employ extensive numerical simulations andlace seems to be affected by the finite size of the system.
measure the number of clusters. The results were averagddhis would suggest that in the limit of small systems, the
over up to 20 simulations for each value@fWe carried out  transition would become almost discontinuous. However, the
studies for several system sizes in order to guarantee thgystem cannot be made infinitely small since theriodig
generalizable nature of our results. boundary conditions start to affect the behavior of the sys-
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FIG. 6. The averaged normalized number Wfclusters as a
function of C in a three-dimensional systems. System sizesLare
=30, L=40, L=50, andL=75. The bifurcation analysis predicts
unstable lamellar structures and stable sc dropletsCfor0.361,
whereas stable cylindrical structures are predicted fo€atl0.65.

FIG. 5. Transition from a twisted minimal surface to spherical
shapes in a three-dimensional system of sizex50x50. The
structures were obtained after 500 000 iterations With0.86. The
visualization was carried out by plotting the middle concentration
isosurface. Parameter valug#) C=0, (B) C=0.44,(C) C=0.53,
and(D) C=1.0

pling favoring lamellar structures is sufficient for increasing
tem. As discussed earlier the spots tend to nucleate frordonnectivity in three-dimensional space.
topological defects, or dislocations, of the striped pattern, The bifurcation analysis does not predict very well the
i.e., from the points where the stripes coincié@. 2). Inthe  transition domain in the three-dimensional case. The stable
case of a small system even one dislocation can affect themellae was predicted to change to stable spherical droplets
morphology of the whole system and thus quickly transformat C=0.355, which corresponds to the border of the transi-
stripes into a lattice of spots. In a larger system many dislotion region in Fig. 6. The cylindrical structures were pre-
cations have to appear at various sites to give rise to spoificted to be stable for aff, which results in a bistability. The
which in turn make the appearance of more spots favorablénsufficient nature of the bifurcation analysis may further be

So far we have discussed our simulation results in 2Dexplained by the sc-lattice approximation. On the other hand,
systems but we have also studied the connectivity transitiothe stability of twisted lamellar surfaces could not be ana-
extensively in 3D. In this case stripes and spots becom@zzed under any symmetry condition. Unlike in 2D we did
lamellae and spherical droplets, respectively. Figure 5 showsot observe any finite-size effects for the smallest possible
the concentration isosurfaces obtained in computer simulasystem sizes.
tions with random initial configuration for four different val-

ues ofC. From Fig. 5 one can observe that in three dim_en- V1. CONCLUSIONS
sions one cannot obtain pure planar lamellae or organized
spherical structure§~CC, BCC or HP¢spontaneously from In this study, we have investigated the connectivity of

random initial conditions. The lamellae we obtain in threespatial patterns generated by the reaction-diffusion mecha-
dimensions is a periodic continuous, aligned and crossingism both in 2D and 3D. This was done by applying cluster-
lamellae without local organization and it resembles a miniing analysis for the dominating chemical. The numerical
mal surface solutiofisee Fig. BA)]. The characterization of simulations were consistent with the predictions drawn from
the various surfaces is difficult, but luckily the specific orga-the bifurcation analysis, and the system showed a transition
nization of qualitatively similar structures does not signifi- in the proximity of the predicte€-value irrespective of the
cantly affect the measured clustering in the structures. Thindividual system size. The agreement with theory turned out
fact that the cylindrical phase is predicted to be stable in sto be closer in the 2D case than in 3D, since in 2D there is a
lattice for all parameter valuegS makes the structure selec- simple transition between monostable patterns through a
tion even more complicated, especially in the transition rebistable regime. In 3D the analytical prediction of the
gion. changes in connectivity was more difficult, since it predicted
It is supposed that in 3D the transition does not occur athe system to be bistable for all parameter values and no
the same point with respect © as in 2D since the third bistability was predicted between lamellar and spherical
dimension gives to the clustering process one more degree sfructures in the sc lattice. On the other hand, for the bcc
freedom, and thus it is easier for the structures to connectattice the bifurcation analysis did predict a bistability, but
This is indeed what one finds. Figure 6 depicts the normalthe bistable values of the control parameter did not agree
ized number of clusters for four different system sizes. Onevith the results of the numerical simulations as well as the
can see that the behavior of the system is different from thapredictions for an sc lattice. Although the bcc structures are
in two dimensions. Now, the transition occurs at a higherstable in Turing systems, it seems that the system cannot find
value of C, since a relatively smaller cubic nonlinear cou- them when the simulation is started from a random initial
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configuration. In large systems of dissipative quasiparticlesmall) implies that the Turing mechanism is very general and
this kind of behavior has been hypothesized to be due to aitis applicable to systems of various sizes. Also the facts that
instability of transient structurg$0]. the pattern selection can be predicted probabilistically as the
The bistability of two different patterns is observed in aevolution starts from random initial conditions and that the
variety of chemical4] and biological systempl7,63. The  established patterns tend to persist even under conditions for

approach of this study brought more insight into the patterfyhich they are not predicted to be stable could be important
selection in Turing systems. We have shown that at least ifo; morphogenesis.

the context of Turing systems the pattern selection of a

bistable system can be predicted probabilistically. By this we
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